

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanawanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : AWP(19EC0414)

Course & Branch: B.Tech. - ECE

Year & Sem: III-B.Tech. & I-Sem.

Regulation: R19

<u>UNIT –I</u> ANTENNA & RADIATION PARAMETERS

1	(a) Explain Radiation Intensity and Antenna Gain.	[L1][CO1]	[6M]
	(b) Write short notes on Radiation Pattern and Beam Efficiency.	[L1][CO1]	[6M]
2	Explain the following	[L2][CO1]	[6M]
	(a) Antenna Directivity and Effective aperture of an Antenna.	[L2][CO1]	[6M]
	(b) Antenna Noise Temperature and Radiation Resistance.		
3	Explain the following with suitable equations.	[L1][CO1]	[6M]
5	(a) Antenna Matching.		LOMI
	(b) Antenna Beam Efficiency	[L1][CO1]	[6M]
4	Develop the expression for Electric and Magnetic Field radiated by	[L3][CO1]	[12M]
	Half Wave Dipole Antenna $\left(\frac{\lambda}{2}\right)$ and Sketch its Field Strength		
	pattern.		
5	A dipole having a length of 3 cm is operated at 1 GHz. The	[L3][CO1]	[12M]
	efficiency factor K=0.6. Calculate the radiation resistance, antenna		
	gain and effective aperture		
6	Derive expression for Electric and Magnetic Field radiated by	[L3][CO1]	[12M]
	Quarter Wave Monopole $(\frac{\lambda}{4})$ and Sketch its Field Strength pattern.		
7	Explain the concepts of radiation from the oscillating dipole.	[L2][CO1]	[12M]
8	(a) Calculate radiation resistance of a dipole antenna of length $\lambda/8$ m.	[L2][CO1]	[4M]
	(b) Define Effective Aperture and give its expression?	[L2][CO1]	[8M]
9	(a)An antenna has a radiation resistance is 72Ω and a loss resistance	[L2][CO1]	[8M]
,	is 8Ω if the power gain is 16. Calculate the directivity of the		[OM]
	antenna.		
	(b) Determine the length of half wave dipole at 30MHz.	[L2][CO1]	[4M]
10	(a) What is meant by Front to back ratio?	[L1][CO1]	[3M]
	(b) Define Radiation Resistance of an antenna.	[L1][CO1]	[3M]
	(c) Derive the expression for antenna efficiency.	[L3][CO1]	[3 M]
	(c) What are the different types of apertures?	[L1][CO1]	[3M]

<u>UNIT –II</u> <u>VHF, UHF AND MICROWAVE ANTENNAS – I</u>

1	(a) Discuss about the Folded dipole antenna and its input impedance.	[L2][CO4]	[6M]
	(b) What are parasitic elements & where they are used?	[L1][CO4]	[6M]
2	(a) Explain about construction and operation of Yagi-Uda antenna	[L2][CO4]	[6M]
	with neat sketch.	[L2][CO4]	[6M]
	(b) Explain about the construction and operation of helical antenna.		
3	(a) Discuss about the helical antenna geometry, axial mode of	[L2][CO3]	[6M]
	radiation and its applications.	[L2][CO4]	[6M]
	(b) Discuss about the helical antenna geometry, Normal mode of		
	radiation and its applications.		
4	(a) Discuss about the horn antenna types & its characteristics.	[L2][CO4]	[6M]
	(b) Discuss the design considerations of pyramidal horn antenna.	[L2][CO4]	[6M]
5	(a) Discuss the types of horn antennas.	[L2][CO4]	[6M]
	(b) Write short notes on	[L1][CO4]	[6M]
	i) Folded dipole antenna ii) Yagi-Uda array		
6	(a) Calculate the directivity of 20 turn helix with $\alpha = 12^{0}$ and	[L3][CO4]	[6M]
	circumference equals to one wavelength.	[L1][CO4]	[6M]
	(b) Give the applications of helical antennas.		
7	(a) Discuss advantages, disadvantages and applications of Yagi-Uda	[L2][CO4]	[6M]
	antenna (h)Calardata tha directivity and half many harmonidth. Far a 20	[L3][CO4]	[6M]
	(b)Calculate the directivity and half power beamwidth. For a 20- turns helical antenna operating at 3GHz with circumference of 10cm		
	1 0		
8	and spacing between the turns 0.3 wavelength is operating at 3GHz. (a) Write short notes on Helical antenna and its Modes.	[L1][CO3]	[6M]
	(b) Calculate the directivity of pyramidal horn antenna with an	[L1][CO3] [L3][CO4]	[6M]
	aperture. If size 12x12cm operating with 3.2cm wavelength.		[OIAT]
			[[]]
	(a) Write short notes on Horn antenna.	[L1][CO4]	[5M]
9	(b) Design Yagi-Uda antenna of six elements to provide a gain of	[L6][CO4]	[7M]
	12dB if the operating frequency is 200 MHz.		
	(a) Draw and explain the three elements of Yagi-Uda array	[L2][CO4]	[3M]
10	(b) Define Normal mode and axial mode in helical antenna?	[L1][CO3]	[3M]
	(c) Define Pitch angle.	[L1][CO3]	[3M]
	(d) Define axial ratio.	[L1][CO3]	[3M]

<u>UNIT – III</u>

VHF, UHF AND MICROWAVE ANTENNAS – II & ANTENNA MEASUREMENTS

1.	(a) Give the advantages and limitations of micro strip antennas.	[L1][CO4]	[6M]
	(b) Explain about micro strip antennas and its types with neat	[L5][CO4]	[6M]
	diagrams.		
2.	(a) Write short notes on flat sheet & corner reflector.	[L1][CO3]	[6M]
	(b) What are the types of reflectors? Explain the features of	[L1][CO3]	[6M]
	parabolic reflectors.	[[][005]	
3.	(a) Discuss the construction of rectangular patch antenna.	[L2][CO3]	[6M]
	(b) A parabolic reflector antenna with diameter 1.8 m is designed to	[L2][CO2]	[6M]
	operate at frequency of 6 GHz and illumination efficiency of 0.65.		
	Calculate the FNBW and antenna gain		
4.	(a) Draw and explain the principle of parabolic reflector.	[L2][CO3]	
	(b) A parabolic dish provides a power gain of 50 dB at 10 GHz with	[L2][CO3]	[6M]
	70% efficiency. Find out i)HPBW ii) BWFN iii) Diameter		[6M]
5.	(a)Explain the effect between variation of focal length position and	[L2][CO3]	[6M]
	radiation in paraboloid.	[L2][CO3]	[6M]
	(b) Explain Cassegrain Feed system and give its advantages		
6.	(a) Explain about the Reciprocity with respect to antenna	[L5][CO3]	
	measurements.		
	(b) Explain near & far fields with respect to antenna measurements.	[L5][CO3]	[6M]
			[6M]
7.	(a) Explain sources of Error in Antenna measurement.	[L2][CO5]	
	(b) Define Radiation pattern and explain the set up for measurement	[L1][CO5]	[6M]
	of Radiation pattern of an antenna		[6M]
			102
8.	(a) Write short notes on Coordination system for antenna	[L1][CO3]	[6M]
	measurement.		
	(b)Explain Gain measurement by direct comparison method.	[L5][CO3]	[6M]
0	(a) Evaluin the pain measurement using charlete method		
9.	(a) Explain the gain measurement using absolute method.	[L5][CO5]	[6M]
	(b) Explain the measurement of directivity	[L5][CO5]	[6M]
10.		[L1][CO4]	[3M]
	(b) What are the applications of Microstrip antenna?	[L1][CO4]	[3 M]
	(c) What is reflector antenna and give its significance?	[L1][CO3]	[3 M]
	(d) Mention different methods of feeds of parabolic reflector	[L1][CO3]	[3M]
	antennas.		

R19

<u>UNIT – IV</u> ANTENNA ARRAYS

1.	(a) What is antenna array? Define point sources and uniform linear	[L1][CO4]	[6M]
	array.		
	(b) Write short notes on broad side and end fire arrays.	[L1][CO4]	[6M]
2.	(a) Explain n- element uniform linear array	[L5][CO4]	[8M]
	(b) Write short notes on collinear Array	[L1][CO4]	[4M]
3.	Derive the expression for far field pattern of an array of two	[L4][CO3]	[12M]
	isotropic point sources at equal amplitude& same phase.		
4.	Explain End fire array with increase directivity and derive the	[L5][CO4]	[12M]
	directivity equation.		
5.	Derive the expression for far field pattern of an array of two	[L4][CO4]	[12M]
	isotropic point sources at equal amplitude & opposite phase.		
6.	(a)Explain pattern multiplication with appropriate examples.	[L3][CO4]	[6M]
	(b) A broad side array operating at 10cm wavelength consists of 4	[L5][CO4]	[6M]
	half wave dipole spaced 50 cm each element carries radio frequency		
	current in the same phase and magnitude 0.25A. Calculate the		
	radiated power, half power beamwidth of major lobe.		
7.	(a) Show that Directivity of BSA, L>>d is $D_0=2(d/\lambda)$.	[L5][CO4]	[6M]
	(b) Show that Directivity of EFA, L>>d is $D_0=4(d/\lambda)$.	[L5][CO4]	[6M]
8.	(a) What is principle of pattern multiplication? List the advantages	[L1][CO4]	[6M]
0.	(a)What is principle of pattern multiplication? List the advantages		
	and disadvantages. (b) Explain about the Binomial array.	[L2][CO4]	[6M]
	(b) Explain about the Binomial array.		
9.	Compare the Broad side array and end fire array.	[L5][CO4]	[12M]
9.	Compare the broad side array and end file array.	[LJ][CO4]	
10	(a) What are the different types of antenna arrays?	[L1][CO4]	[4M]
	(b) What are the different cases of arrays of two-point sources?	[L1][CO4]	[4M]
	(c) Find the minimum spacing between the elements in a broadside		
	array of 10 isotropic radiators to a have directivity of 7db.	[L2][CO4]	[4M]
	J		
			1

<u>UNIT – V</u> WAVE PROPAGATION

1.	(a) Explain different modes of Wave Propagation.	[L2][CO5]	[6M]
	(b) Explain about refraction and reflection of EM waves.	[L2][CO5]	[6M]
2.	Draw and explain the structure of Ionosphere with its typical electron	[L5][CO5]	[12M]
	density variation characteristics.		
3.	Explain Reflection and Refraction of sky waves by ionosphere.	[L5][CO5]	[12M]
4.	Explain the Structure of Ground wave propagation with neat sketch.	[L5][CO5]	[12M]
5.	(a) Explain critical frequency and its expression.	[L5][CO5]	[6M]
	(b) Explain Maximum usable frequency with its expression.	[L5][CO5]	[6M]
6.	(a) Explain optimum working frequency and its significance.	[L5][CO5]	[6M]
	(b)Explain lowest usable high frequency (LUHF) and give its	[L5][CO6]	[6M]
	significance.		
7.	(a) Explain Virtual height and its significance.	[L5][CO6]	[6M]
	(b) Explain Skip distance and derive its expression.	L5][CO6]	[6M]
8.	(a) Explain the relation between MUF and skip distance.	[L5][CO6]	[6M]
	(b) Explain Multi hop propagation.	[L5][CO6]	[6M]
9.	(a) Explain the energy loss in Ionosphere.	[L5][CO6]	[6M]
	(b) At a particular day time, the critical frequency observed in E and F	[L4][CO6]	[6M]
	layers are 2.5 MHz and 8.5 MHz respectively. Calculate the maximum	[2]][000]	
	electron density of both the layer sin cubic meter.		
10	(a) For a flat earth assume that at 400 km reflection takes place. The	[L4][CO6]	[8M]
	maximum density of ionosphere corresponds to a refractive index of		
	0.9 at 10 MHz. Calculate range for which maximum usable frequency		
	is 10 MHz	[L4][CO6]	[4 M]
	(b)Determine the maximum usable frequency for a critical frequency of		[-₽⊥VI]
	20 MHz and an angle of incidence of 35°		

PREPARED BY

Dr. P. G. KUPPUSAMY Dr.P.D.SELVAM B.RAVIBABU DEPARTMENT OF ECE, SIETK, PUTTUR.